

ChangeMachine

[image: _images/changemachine-logo.png]
ChangeMachine was written to handle the CouchDB change processing required in Steelmesh [https://github.com/steelmesh/steelmesh]. It is responsible for monitoring and responding to changes in a number of couchdb instances and taking appropriate actions in response to those changes.

The implementation of ChangeMachine is reasonably simple thanks to the flatiron neuron [https://github.com/flatiron/neuron] queueing library and through leveraging changemate [https://github.com/DamonOehlman/changemate] notifiers.

Contents

	Getting Started

	Use Cases

	ChangeMachine Examples
	Simple Example using Changemate Notifier

	Simple Example demonstrating ready queue

	Checkpointing

	Serializing Data from CouchDB

	Non Notifier Change Machines

	Machine Chaining

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

ChangeMachine is designed to work in similar fashion to manufacturing plant, whereby a plant is made up of many machines that perform a single function, and items (or materials) enter the machine, get processed and leave the machine.

In most cases, a machine processes an item successfully:

machine.on('process', function(item) {
 // do something with the item

 // mark the item as done
 item.done();
});

But sometimes things can go wrong:

machine.on('process', function(item) {
 try {
 // do something with the item

 // mark the item as done
 item.done();
 }
 catch (e) {
 // mark the item as failed
 item.fail({ error: e });
 }
});

Additionally, sometimes you might receive an error when something is done but not want to have to call a separate fail function. You can do this by passing an error in the options for any of the done, fail or skip methods and the status will be remapped to fail:

machine.on('process', function(item) {
 // write the item data to a file
 writeItemData(item, function(err) {
 item.done({ error: err });
 });
});

Regardless of how you flag that an item has failed, you probably want to know about it:

machine.on('fail', function(item, err) {
 console.log('got a failed item: ' + item.id);
});

Use Cases

To be completed

ChangeMachine Examples

This section of the documentation comments on the examples that are included with the ChangeMachine source [https://github.com/DamonOehlman/changemachine].

Simple Example using Changemate Notifier

This simple example demonstrates responding to changes from an external couchdb:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	var cm = require('../'),
 machine = new cm.Machine('<:couch:> http://sidelab.iriscouch.com/seattle_neighbourhood', {
 concurrency: 25 // override neurons default concurrency of 50
 });

machine.on('enter', function(item) {
 console.log(' entered: ' + item.id, machine.stats());
});

// perform actions for each of the
machine.on('process', function(item) {
 console.log('processing: ' + item.id, machine.stats());

 setTimeout(function() {
 item.done();
 console.log(' done: ' + item.id, machine.stats());
 }, Math.random() * 5000);
});

If it is all working nicely, you should see output similar to simple.output.txt [https://github.com/steelmesh/changemachine/blob/master/examples/simple.output.txt].

Simple Example demonstrating ready queue

In the example above, items existed in either the waiting or processing queues. This because the machine had a process event that could be used to process the items as they enter the machine. In a case where a process event handler is not defined, however, the items ready for processing (according to neuron’s concurrency setting) will be placed in the ready queue.

Let’s modify the previous example to wire up the process event after 5 seconds:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	var cm = require('../'),
 machine = new cm.Machine('<:couch:> http://sidelab.iriscouch.com/seattle_neighbourhood', {
 concurrency: 25 // override neurons default concurrency of 50
 });

machine.on('enter', function(item) {
 console.log(' entered: ' + item.id, machine.stats());
});

setTimeout(function() {
 // perform actions for each of the
 machine.on('process', function(item) {
 console.log('processing: ' + item.id, machine.stats());

 setTimeout(function() {
 item.done();
 console.log(' done: ' + item.id, machine.stats());
 }, Math.random() * 5000);
 });
}, 5000);

In the output [https://github.com/steelmesh/changemachine/blob/master/examples/delayedprocess.output.txt] for this example, you should see that before processing starts a number of items are reported in the ready queue. Once the process event is connected however, the items move directly from a waiting status to processing.

Checkpointing

At this stage ChangeMachine implements very simple checkpointing storage but it works nicely and event attempts to synchronously persist data when the process exit event is detected.

Below is an example that demonstrates how a state store is configured:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	var cm = require('../');
var path = require('path');
var machine = new cm.Machine('<:couch:> http://sidelab.iriscouch.com/seattle_neighbourhood', {
 storage: new cm.JsonStore({ filename: path.resolve(__dirname, 'checkpoint.json') })
});

var counter = 0;

// perform actions for each of the
machine.on('process', function(item) {
 console.log('processing item sequence: ' + item.seq);

 counter++;
 item.done();

 // if we have processed 10 items, then stop
 if (counter >= 10) {
 machine.notifier.close();
 }
});

Serializing Data from CouchDB

If you wanted to extract all the JSON data from documents in a couch database (not the attachments though - although it could be combined with attachmate [https://github.com/steelmesh/attachmate] to achieve that) the following example is probably of interest:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	var cm = require('changemachine'),
 fs = require('fs'),
 path = require('path'),
 machine = new cm.Machine('<:couch:> http://sidelab.iriscouch.com/seattle_neighbourhood', {
 include_docs: true,
 concurrency: 10 // override neurons default concurrency of 50
 }),
 dataPath = path.resolve(__dirname, 'data');

// make the data directory
fs.mkdir(dataPath);

// perform actions for each of the
console.log('waiting for change information');
machine.on('process', function(item) {
 try {
 var text = JSON.stringify(item.doc);

 fs.writeFile(path.join(dataPath, item.id + '.json'), text, 'utf8', function(err) {
 if (err) {
 item.fail(err);
 }
 else {
 item.done();
 }

 console.log('wrote ' + item.id + '.json', machine.stats());
 });
 }
 catch (e) {
 console.log('failed writing: ' + item.id, e);
 item.fail(e);
 }
});

Non Notifier Change Machines

While ChangeMachine is designed to work in conjuction with changemate [https://github.com/DamonOehlman/changemate], it is possible to create items and process them manually also.

Example to be completed

Machine Chaining

Machines in ChangeMachine are very chain friendly.

Example to be completed

Index

 nav.xhtml

 Table of Contents

 		
 ChangeMachine

 		
 Getting Started

 		
 Use Cases

 		
 ChangeMachine Examples

 		
 Simple Example using Changemate Notifier

 		
 Simple Example demonstrating ready queue

 		
 Checkpointing

 		
 Serializing Data from CouchDB

 		
 Non Notifier Change Machines

 		
 Machine Chaining

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/changemachine-logo.png

_static/ajax-loader.gif

_static/comment-close.png

